Question: In a college of 300 students, every student reads 5 newspapers and every newspaper is read by 60 students. What is the number of newspapers?
- 5
- 10
- 25
- 50
- 60
Correct Answer: C
Solution and Explanation:
Approach Solution 1:
The given condition of a college of 300 students, every student reads 5 newspapers and every newspaper is read by 60 students. In order to solve the problem regarding the number of newspapers the following method needs to be resolved.
Let’s assume that the total number of newspapers be x
Considering that each newspaper is read by 60 students, the number of times newspapers are being read
=60×x=60x
Now we are also given that each of 300 students read 5 newspapers.
So the number of times newspapers are being read
=300×5=1500
So this implies that
60x = 1500
=> x = 1500/60
=> x = 25
Hence, there are a total of 25 newspapers that are being read by the students in the college.
Approach Solution 2:
We are given that in a college of 300 students, every student reads 5 newspapers.
Let us first find out how many times all the newspapers are read.
If one student reads 1 newspaper, then the total number of times all newspapers are read = 1.
If 300 students read 1 newspaper each, then the total number of times all newspapers are read = 300×1=300300×1=300.
So, if 300 students read 5 newspapers each, then the total number of times all newspapers are read = 300×5=1500300×5=1500.
Also, we can write, Number of times each student read a newspaper= Total number of times newspapers read/Total number of students
Let us now find out the number of newspapers.
If each newspaper is read by 1 student, and the total number of times all the newspapers are read is also 1, then we can easily say that the total number of newspapers is one, which one student must have read 1 time.
Now, suppose each newspaper is read by 1 student and the total number of times newspapers are read is 300. Then the total number of newspapers must also be 300, which 300 different students must have read 300/300= 1 time each.
Now, suppose each newspaper is read by 2 students and total number of times newspapers are read is 300, then total number of newspapers must 300/2=150, which 300 different students must have read 300300=1300300=1 times each.
Now, if each newspaper is read by 60 students and total number of times newspapers are read is 1500, then total number of newspapers must 1500/60=25, which 300 different students must have read 1500/300= 5 times each.
Therefore, the number of newspapers we get is 25.
Approach Solution 3:
Determine the number of newspapers:
It is given that, the number of students is 300.
The number of students, who read newspapers is 60.
Every student reads 5 newspapers.
Let, the number of newspapers be x.
Thus, the number of students is,x*60/5= 300
⇒x*60= 300×5
⇒x*60= 1500
⇒ x=1500/60
⇒ x= 25
Therefore, the number of newspapers is 25.
“In a college of 300 students, every student reads 5 newspapers and”- is a topic of the GMAT Quantitative reasoning section of GMAT. This question has been taken from the book "GMAT Official Guide 2018 Quantitative Review".To solve GMAT Problem Solving questions a student must have knowledge about a good amount of qualitative skills. GMAT Quant practice papers improve the mathematical knowledge of the candidates as it represents multiple sorts of quantitative problems.
Suggested GMAT Problem Solving Questions
- The Value Of (2^(-14) + 2^(-15) + 2^(-16) + 2^(-17))/5 Is GMAT Problem Solving
- Points A And B Are 120 Km Apart. A Motorcyclist Starts From GMAT Problem Solving
- A student took five papers in an examination, where the full marks GMAT Problem Solving
- In how many ways can letters the word ATTITUDE be rearranged such that GMAT Problem Solving
- A merchant mixes three varieties of rice costing $20/kg, $24/kg GMAT Problem Solving
- ABC is an equilateral triangle, and point D is the midpoint of side BC GMAT Problem Solving
- A Batsman Makes a Score of 87 Runs in the 17th Match and Thus Increases GMAT Problem Solving
- If M= √4+3√4+4√4, Then the Value of M is GMAT Problem Solving
- An Octagon Is Inscribed In A Circle As Shown Above. What Of The Area GMAT Problem Solving
- In a Company of Only 20 Employees, 10 Employees make $80,000/yr GMAT Problem Solving
- A bag contains blue and red balls only GMAT Problem Solving
- (4.8*10^9)^(1/2) is closest in value to GMAT Problem Solving
- What Is The Units Digit Of 2222^333 ∗ 3333^222? GMAT Problem Solving
- What Is The Tens Digit Of 6^17? GMAT Problem Solving
- If m=−2, What Is −m^(−m)? GMAT Problem Solving
- An Automated Manufacturing Plant Uses Robots To Manufacture Products GMAT Problem Solving
- The Surface Distance Between 2 Points on the Surface of a Cube is the GMAT Problem Solving
- The Average Monthly Expenditure of a Family for the First Four Months GMAT Problem Solving
- When a Certain Perfect Square is Increased by 148, the Result is GMAT Problem Solving
- If p#q Denotes the Least Common Multiple of p and q, Then ((12#16) GMAT Problem Solving
- The Smallest of Six Consecutive Odd Integers Whose Average (arithmetic mean) is x + 2 GMAT Problem Solving
- The Greatest 6-Digit Number When Divided by 6, 7 ,8 , 9, and 10 Leaves a Remainder of 4, 5, 6, 7, and 8 Respectively GMAT Problem Solving
- Is Zero Even Integer or Odd Integer? GMAT Problem Solving
- If 20 Men or 24 Women or 40 Boys can do a Job in 12 Days GMAT Problem Solving
- If 10 millimeters equal 1 centimeter, how many square centimeters does 1 square millimeter equal?
- How many Terminating Zeroes does 200 Have GMAT Problem Solving
- Properties of Circle GMAT Problem Solving
- If 10, 12 and ‘x’ are Sides of an Acute Angled Triangle, How Many Integer Values of ‘x’ are Possible? GMAT Problem Solving
- For How Many Values of k is 12^12 the Least Common Multiple GMAT Problem Solving
- Bag A Contains Red, White and Blue Marbles such that GMAT Problem Solving
- Assume that all 7-Digit Numbers That do not Begin with 0 or 1 are Valid Phone Numbers. GMAT Problem Solving
- A Car Travels from Mayville to Rome at an Average Speed of 30 miles per hour GMAT Problem Solving
- A Certain Sum of Money is Divided Among A, B and C such that A Gets One GMAT Problem Solving
- The Ratio of Boys to Girls in Class A is 1 to 4, and that in Class B is 2 to 5 GMAT Problem Solving
- The Maximum Mark in an Examination is 100 and the Minimum is 0 GMAT Problem Solving
- A Rectangular Box has Dimensions 12*10*8 Inches GMAT Problem Solving
- A Driver Completed the First 20 Miles of a 40-Mile Trip at an Average Speed of 50 Miles Per Hour GMAT Problem Solving
- The sum of three numbers is 98. If the ratio between first and second be 2:3 and between second and third be 5:8 GMAT Problem Solving
- How Many Three-Letter Words Can be Constructed Using All the 26 Letters of the English Alphabet GMAT Problem Solving
- How Many Litres of Pure Alcohol Must be Added to a 100-litre Solution That is 20 Percent Alcohol GMAT Problem Solving
- For Any Four Digit Number, abcd, *abcd*= (3^a)(5^b)(7^c)(11^d) GMAT Problem Solving
- How Many Five Digit Numbers Can be Formed Using Digits 0, 1, 2, 3, 4, 5, Which Are Divisible By 3 GMAT Problem Solving
- An “Armstrong Number” is an n-Digit Number That is Equal to the Sum of the nth Powers GMAT Problem Solving
- A train crosses a bridge of length 500 m in 40 seconds and a lamp post on the bridge in 15 seconds
- A Train can Travel 50% Faster than a Car GMAT Problem Solving
- A rectangle is inscribed in a hexagon that has all sides of equal length and all angles of equal measure GMAT Problem Solving
- A Positive Integer Is Divisible by 9 If And Only If The Sum of Its Digits is Divisible By 9 GMAT Problem Solving
- The two lines are tangent to the circle. GMAT Problem Solving
- In a Certain Population, There are 3 Times as Many People Aged Twenty-One or Under GMAT Problem Solving
- In How Many Different Ways can 3 Identical Green Shirts and 3 Identical Red Shirts be Distributed Among 6 Children GMAT Problem Solving
Comments