Given (x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27) GMAT Problem Solving

Sayantani Barman logo

bySayantani Barman Experta en el extranjero

Question: Given: \(\frac{x^3 + 12x}{6x^2 + 8} = \frac{y^3 + 27y}{9y^2 + 27}\). What is the value of \(\frac{x}{y}\)?

  1. \(\frac{3}{4}\)
  2. \(\frac{6}{5}\)
  3. \(\frac{2}{3}\)
  4. \(\frac{3}{2}\)
  5. \(\frac{5}{6}\)

Answer:

Solution with Explanation:

Approach Solution (1):

If \(\frac{a}{b}=\frac{c}{d}\)then, we have: \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

This is the idea of componendo-dividendo.

To validate: \(\frac{6}{4}=\frac{3}{2} \Rightarrow \frac{6+4}{6-4}=\frac{3+2}{3-2}\)

Apply componendo-dividendo in this equation:

\(\frac{x^3+12x}{6x^2+8}=\frac{y^3+27y}{9y^2+27}\)

\(\frac{x^3+12x+6x^2+8}{x^3+12x-6x^2-8}=\frac{y^3+27y+9y^2+27}{y^3+27y-9y^2-27}\)

\(\frac{x^3+6x^2+12x+8}{x^3+-6x^2+12x-8}=\frac{y^3+27y+9y^2+27}{y^3-9y^2+27y-27}\)

\(\frac{(x+2)^3}{(x-2)^3}=\frac{(y+3)^3}{(y-3)^3}\)

Taking cube root:

\(\Rightarrow \frac{(x+2)}{(x-2)} = \frac{(y+3)}{(y-3)}\)

Apply componendo-dividendo again:

\(\Rightarrow \frac{(x+2+x-2)}{(x+2-x+2)}=\frac{(y+3+y-3)}{(y+3-y+3)}\)

\(\Rightarrow \frac{(2x)}{(4)} = \frac{(2y)}{(6)}\)

\(\Rightarrow \frac{(x)}{(4)}=\frac{(y)}{(6)}\)

\(\Rightarrow \frac{x}{y}=\frac{2}{3}\)

Correct option: C

“Given:\(\frac{x^3 + 12x}{6x^2 + 8} = \frac{y^3 + 27y}{9y^2 + 27}\). What is the value of \(\frac{x}{y}\)?”- is a topic of the GMAT Quantitative reasoning section of GMAT. This question has been taken from the book “GMAT Official Guide Quantitative Review”. To solve GMAT Problem Solving questions a student must have knowledge about a good amount of qualitative skills. The GMAT Quant topic in the problem-solving part requires calculative mathematical problems that should be solved with proper mathematical knowledge.

Suggested GMAT Problem Solving Samples


 

Fees Structure

CategoryState
General15556

In case of any inaccuracy, Notify Us! 

Comments


No Comments To Show