Question: For what values of K the quadratic equation (K + 1)x^2 – 2(K – 1)x + 1 = 0 has equal roots?
- 0 or -1
- 0 or 1
- 0 or 2
- 0 or 3
- 0 or 4
Correct Answer: D
Solution and Explanation:
Approach Solution 1:
(K+1)x^2–2(K–1)x+1= 0
[−2(k−1)]^2= 4∗(k+1)∗1
i.e. 4k^2+4−8k= 4k+4
i.e. 4k^2= 12k
i.e. k = 3 or 0
Approach Solution 2:
4(K-1)^2 - 4(K+1)= 0
K^2 - 2K + 1 - K - 1= 0
K^2 - 3K= 0
K= 0 or 3
Approach Solution 3:
Since roots are equal.
Therefore d= 0…(1)
(k+1)x^2-2(k-1)x+1= 0
d= b^2-4ac
d= (-2(k-1))^2-4(k+1)(1)
D- (-2k+2)^2-4k-4
d= 4k^2+4-8k-4k-4
Since (a+b)^2= a^2+b^2+2ab
d= 4k^2-12k
From (1), d= 0
Therefore, equation will be
0= 4k^2-12k
4k^2= 12k
k^2= 12/4
k^2= 3k
k^2-3k= 0
k(k-3)= 0
k= 0 or k-3= 0
k= 3
Therefore, values of k are 0,3
“For what values of K the quadratic equation (K + 1)x^2 – 2(K – 1)x + 1”- is a topic of the GMAT Quantitative reasoning section of GMAT. To solve GMAT Problem Solving questions a student must have knowledge about a good amount of qualitative skills. GMAT Quant practice papers improve the mathematical knowledge of the candidates as it represents multiple sorts of quantitative problems.
Suggested GMAT Problem Solving Questions
- How many Terminating Zeroes does 200 Have GMAT Problem Solving
- Properties of Circle GMAT Problem Solving
- If 10, 12 and ‘x’ are Sides of an Acute Angled Triangle, How Many Integer Values of ‘x’ are Possible? GMAT Problem Solving
- For How Many Values of k is 12^12 the Least Common Multiple GMAT Problem Solving
- Bag A Contains Red, White and Blue Marbles such that GMAT Problem Solving
- Assume that all 7-Digit Numbers That do not Begin with 0 or 1 are Valid Phone Numbers. GMAT Problem Solving
- A Car Travels from Mayville to Rome at an Average Speed of 30 miles per hour GMAT Problem Solving
- A Certain Sum of Money is Divided Among A, B and C such that A Gets One GMAT Problem Solving
- The Ratio of Boys to Girls in Class A is 1 to 4, and that in Class B is 2 to 5 GMAT Problem Solving
- The Maximum Mark in an Examination is 100 and the Minimum is 0 GMAT Problem Solving
- A Rectangular Box has Dimensions 12*10*8 Inches GMAT Problem Solving
- A Driver Completed the First 20 Miles of a 40-Mile Trip at an Average Speed of 50 Miles Per Hour GMAT Problem Solving
- The sum of three numbers is 98. If the ratio between first and second be 2:3 and between second and third be 5:8 GMAT Problem Solving
- How Many Three-Letter Words Can be Constructed Using All the 26 Letters of the English Alphabet GMAT Problem Solving
- How Many Litres of Pure Alcohol Must be Added to a 100-litre Solution That is 20 Percent Alcohol GMAT Problem Solving
- For Any Four Digit Number, abcd, *abcd*= (3^a)(5^b)(7^c)(11^d) GMAT Problem Solving
- How Many Five Digit Numbers Can be Formed Using Digits 0, 1, 2, 3, 4, 5, Which Are Divisible By 3 GMAT Problem Solving
- An “Armstrong Number” is an n-Digit Number That is Equal to the Sum of the nth Powers GMAT Problem Solving
- A train crosses a bridge of length 500 m in 40 seconds and a lamp post on the bridge in 15 seconds
- A Train can Travel 50% Faster than a Car GMAT Problem Solving
- A rectangle is inscribed in a hexagon that has all sides of equal length and all angles of equal measure GMAT Problem Solving
- If x = -3, What Is The Value Of -3x^2? GMAT Problem Solving
- There Were R Red Balls And Y Yellow Balls In A Bag. Three Red Balls GMAT Problem Solving
- With An Average Speed Of 40 Km/H, A Train Reaches Its Destination On GMAT Problem Solving
- A Photographer Will Arrange 6 People Of 6 Different Heights GMAT Problem Solving
- What Is The Radius Of The Incircle Of The Triangle Whose Sides Measure GMAT Problem Solving
- The Value Of (2^(-14) + 2^(-15) + 2^(-16) + 2^(-17))/5 Is GMAT Problem Solving
- Points A And B Are 120 Km Apart. A Motorcyclist Starts From GMAT Problem Solving
- A student took five papers in an examination, where the full marks GMAT Problem Solving
- In how many ways can letters the word ATTITUDE be rearranged such that GMAT Problem Solving
- A merchant mixes three varieties of rice costing $20/kg, $24/kg GMAT Problem Solving
- ABC is an equilateral triangle, and point D is the midpoint of side BC GMAT Problem Solving
- A Batsman Makes a Score of 87 Runs in the 17th Match and Thus Increases GMAT Problem Solving
- If M= √4+3√4+4√4, Then the Value of M is GMAT Problem Solving
- An Octagon Is Inscribed In A Circle As Shown Above. What Of The Area GMAT Problem Solving
- In a Company of Only 20 Employees, 10 Employees make $80,000/yr GMAT Problem Solving
- A bag contains blue and red balls only GMAT Problem Solving
- (4.8*10^9)^(1/2) is closest in value to GMAT Problem Solving
- What Is The Units Digit Of 2222^333 ∗ 3333^222? GMAT Problem Solving
- What Is The Tens Digit Of 6^17? GMAT Problem Solving
- If m=−2, What Is −m^(−m)? GMAT Problem Solving
- An Automated Manufacturing Plant Uses Robots To Manufacture Products GMAT Problem Solving
- The Surface Distance Between 2 Points on the Surface of a Cube is the GMAT Problem Solving
- The Average Monthly Expenditure of a Family for the First Four Months GMAT Problem Solving
- When a Certain Perfect Square is Increased by 148, the Result is GMAT Problem Solving
- If p#q Denotes the Least Common Multiple of p and q, Then ((12#16) GMAT Problem Solving
- The Smallest of Six Consecutive Odd Integers Whose Average (arithmetic mean) is x + 2 GMAT Problem Solving
- The Greatest 6-Digit Number When Divided by 6, 7 ,8 , 9, and 10 Leaves a Remainder of 4, 5, 6, 7, and 8 Respectively GMAT Problem Solving
- Is Zero Even Integer or Odd Integer? GMAT Problem Solving
- If 20 Men or 24 Women or 40 Boys can do a Job in 12 Days GMAT Problem Solving
Comments