For a Class of 50 Students, The Table Above Reports The Number of Students GMAT Data Sufficiency

Rituparna Nath logo

byRituparna Nath Content Writer at Study Abroad Exams

Question:

For a class of 50 students, the table above reports the number of students who expected to receive an A, a B, or a C or below as well as the actual number of students who received each grade. How many students who expected to receive a C or below received a grade of C or below?

(1) Of the students who expected to receive an A or a B, 80% actually did receive an A or a B.
(2) Of the students who expected to receive a B, 6 students actually received a C or below.

  1. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
  2. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
  3. BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
  4. EACH statement ALONE is sufficient.
  5. Statements (1) and (2) TOGETHER are not sufficient.

“For a class of 50 students, the table above reports the number of students who expected to receive an A, a B, or a C” - is a topic of the GMAT Quantitative reasoning section of GMAT. This question has been taken from the book "GMAT Quantitative Review". The GMAT Quant section consists of a total of 31 questions. GMAT Data Sufficiency questions consist of a problem statement followed by two factual statements. GMAT data sufficiency comprises 15 questions which are two-fifths of the total 31 GMAT quant questions.

Solution and Explanation:
There is only one approach to solve the problem statement.

Given: For a class of 50 students, the table above reports the number of students who expected to receive an A, a B, or a C or below as well as the actual number of students who received each grade.
Asked: How many students who expected to receive a C or below received a grade of C or below?

(1) Of the students who expected to receive an A or a B, 80% actually did receive an A or a B.
Here we can see that the statement 1 implies that Students who expect to receive an A or a B be 25 + 15 = 40
So, 80% of 40 equals 32 students, who received an A or a B.
Then the rest would be 8 students received a C.
Therefore, the total number of students receiving a C equals 14
Hence, the number of students who are expected to receive a C or below received a grade of C or below would be 14 - 8 = 6
This show thst statement 1 is SUFFICIENT.

(2) Of the students who expected to receive a B, 6 students actually received a C or below.
In statement 2 it is not known how many students expected to receive an A received C or below than that. Hence this makes that the statement 2 NOT SUFFICIENT.
Correct Answer
:
A

Suggested GMAT Data Sufficiency Questions

Fees Structure

CategoryState
General15556

In case of any inaccuracy, Notify Us! 

Comments


No Comments To Show