Question:

The value of $\begin{vmatrix} x+y&y+z & z+ x \\[0.3em] x & y & z \\[0.3em] x-y & y-z & z-x \end{vmatrix}$ = is equal to :

Updated On: May 30, 2022
  • $0$
  • $(x+y+z)^3$
  • $2(x+y+z)^3$
  • $2 (x+y+z)^2$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Let $A = \begin{bmatrix}x+y&y+z&z+x\\ x&y&z\\ x-y&y-z&z-x\end{bmatrix} $ Applying $ C_{1} \to C_{1} + C_{2} +C_{3} $ $= \begin{bmatrix}2\left(x+y+z\right)&y+z&z+x\\ x+y+z&y&z\\ 0&y-z&z-x\end{bmatrix} $ $= \left(x+y+z\right) \begin{bmatrix}2&y+z&z+x\\ 1&y&z\\ 0&y-z&z-x\end{bmatrix} $ Applying $ R_{2} \to 2R_{2} -R_{1} $ $ = \left(x+y+z\right) \begin{bmatrix}2&y+z&z+x\\ 0&y-z&z-x\\ 0&y-z&z-x\end{bmatrix}$ $= 0$ ($\because$ Two rows are identical)
Was this answer helpful?
0
0