This is new question created.
test test test test
answe 1
9 | 9 | 9 |
6 | 7 | 80 |
4 | 3 | 2 |
s | o | l |
i | t | u |
o | n |
Find the missing one.
4 | ? | 9 |
1 | 8 | 9 |
5 | 4 | 3 |
This is question.
Conjugate acid of $SO_4^{2-}$ is
Which of the following is a Lewis acid ?
Which of the following are Lewis acids ?
In science, a formula is a concise way of expressing information symbolically, as in a mathematical formula or a chemical formula. The informal use of the term formula in science refers to the general construct of a relationship between given quantities.
The plural of formula can be either formulas (from the most common English plural noun form) or, under the influence of scientific Latin, formulae (from the original Latin).[2]
of course, to describe motion we must deal with velocity and acceleration, as well as with displacement. We must find their components along the x– and y-axes, too. We will assume all forces except gravity (such as air resistance and friction, for example) are negligible. The components of acceleration are then very simple: ay = –g = –9.80 m/s2. (Note that this definition assumes that the upwards direction is defined as the positive direction. If you arrange the coordinate system instead such that the downwards direction is positive, then acceleration due to gravity takes a positive value.) Because gravity is vertical, ax=0. Both accelerations are constant, so the kinematic equations can be used.
of course, to describe motion we must deal with velocity and acceleration, as well as with displacement. We must find their components along the x– and y-axes, too. We will assume all forces except gravity (such as air resistance and friction, for example) are negligible. The components of acceleration are then very simple: ay = –g = –9.80 m/s2. (Note that this definition assumes that the upwards direction is defined as the positive direction. If you arrange the coordinate system instead such that the downwards direction is positive, then acceleration due to gravity takes a positive value.) Because gravity is vertical, ax=0. Both accelerations are constant, so the kinematic equations can be used.
In mathematics, a formula generally refers to an identity which equates one mathematical expression to another, with the most important ones being mathematical theorems. Syntactically, a formula (often referred to as a well-formed formula) is an entity which is constructed using the symbols and formation rules of a given logical language.[3] For example, determining the volume of a sphere requires a significant amount of integral calculus or its geometrical analogue, the method of exhaustion.[4] However, having done this once in terms of some parameter (the radius for example), mathematicians have produced a formula to describe the volume of a sphere in terms of its radius:
\((a+b)^{2}=a^{2}+b^{2}+2ab\)
of course, to describe motion we must deal with velocity and acceleration, as well as with displacement. We must find their components along the x– and y-axes, too. We will assume all forces except gravity (such as air resistance and friction, for example) are negligible. The components of acceleration are then very simple: ay = –g = –9.80 m/s2. (Note that this definition assumes that the upwards direction is defined as the positive direction. If you arrange the coordinate system instead such that the downwards direction is positive, then acceleration due to gravity takes a positive value.) Because gravity is vertical, ax=0. Both accelerations are constant, so the kinematic equations can be used.
of course, to describe motion we must deal with velocity and acceleration, as well as with displacement. We must find their components along the x– and y-axes, too. We will assume all forces except gravity (such as air resistance and friction, for example) are negligible. The components of acceleration are then very simple: ay = –g = –9.80 m/s2. (Note that this definition assumes that the upwards direction is defined as the positive direction. If you arrange the coordinate system instead such that the downwards direction is positive, then acceleration due to gravity takes a positive value.) Because gravity is vertical, ax=0. Both accelerations are constant, so the kinematic equations can be used.
of course, to describe motion we must deal with velocity and acceleration, as well as with displacement. We must find their components along the x– and y-axes, too. We will assume all forces except gravity (such as air resistance and friction, for example) are negligible. The components of acceleration are then very simple: ay = –g = –9.80 m/s2. (Note that this definition assumes that the upwards direction is defined as the positive direction. If you arrange the coordinate system instead such that the downwards direction is positive, then acceleration due to gravity takes a positive value.) Because gravity is vertical, ax=0. Both accelerations are constant, so the kinematic equations can be used.
of course, to describe motion we must deal with velocity and acceleration, as well as with displacement. We must find their components along the x– and y-axes, too. We will assume all forces except gravity (such as air resistance and friction, for example) are negligible. The components of acceleration are then very simple: ay = –g = –9.80 m/s2. (Note that this definition assumes that the upwards direction is defined as the positive direction. If you arrange the coordinate system instead such that the downwards direction is positive, then acceleration due to gravity takes a positive value.) Because gravity is vertical, ax=0. Both accelerations are constant, so the kinematic equations can be used.
of course, to describe motion we must deal with velocity and acceleration, as well as with displacement. We must find their components along the x– and y-axes, too. We will assume all forces except gravity (such as air resistance and friction, for example) are negligible. The components of acceleration are then very simple: ay = –g = –9.80 m/s2. (Note that this definition assumes that the upwards direction is defined as the positive direction. If you arrange the coordinate system instead such that the downwards direction is positive, then acceleration due to gravity takes a positive value.) Because gravity is vertical, ax=0. Both accelerations are constant, so the kinematic equations can be used.
of course, to describe motion we must deal with velocity and acceleration, as well as with displacement. We must find their components along the x– and y-axes, too. We will assume all forces except gravity (such as air resistance and friction, for example) are negligible. The components of acceleration are then very simple: ay = –g = –9.80 m/s2. (Note that this definition assumes that the upwards direction is defined as the positive direction. If you arrange the coordinate system instead such that the downwards direction is positive, then acceleration due to gravity takes a positive value.) Because gravity is vertical, ax=0. Both accelerations are constant, so the kinematic equations can be used.
of course, to describe motion we must deal with velocity and acceleration, as well as with displacement. We must find their components along the x– and y-axes, too. We will assume all forces except gravity (such as air resistance and friction, for example) are negligible. The components of acceleration are then very simple: ay = –g = –9.80 m/s2. (Note that this definition assumes that the upwards direction is defined as the positive direction. If you arrange the coordinate system instead such that the downwards direction is positive, then acceleration due to gravity takes a positive value.) Because gravity is vertical, ax=0. Both accelerations are constant, so the kinematic equations can be used.
of course, to describe motion we must deal with velocity and acceleration, as well as with displacement. We must find their components along the x– and y-axes, too. We will assume all forces except gravity (such as air resistance and friction, for example) are negligible. The components of acceleration are then very simple: ay = –g = –9.80 m/s2. (Note that this definition assumes that the upwards direction is defined as the positive direction. If you arrange the coordinate system instead such that the downwards direction is positive, then acceleration due to gravity takes a positive value.) Because gravity is vertical, ax=0. Both accelerations are constant, so the kinematic equations can be used.
of course, to describe motion we must deal with velocity and acceleration, as well as with displacement. We must find their components along the x– and y-axes, too. We will assume all forces except gravity (such as air resistance and friction, for example) are negligible. The components of acceleration are then very simple: ay = –g = –9.80 m/s2. (Note that this definition assumes that the upwards direction is defined as the positive direction. If you arrange the coordinate system instead such that the downwards direction is positive, then acceleration due to gravity takes a positive value.) Because gravity is vertical, ax=0. Both accelerations are constant, so the kinematic equations can be used.
of course, to describe motion we must deal with velocity and acceleration, as well as with displacement. We must find their components along the x– and y-axes, too. We will assume all forces except gravity (such as air resistance and friction, for example) are negligible. The components of acceleration are then very simple: ay = –g = –9.80 m/s2. (Note that this definition assumes that the upwards direction is defined as the positive direction. If you arrange the coordinate system instead such that the downwards direction is positive, then acceleration due to gravity takes a positive value.) Because gravity is vertical, ax=0. Both accelerations are constant, so the kinematic equations can be used.
Let us look at the algebraic identity: (a + b)2 = a2 + 2ab + b2, and try to understand this identity in algebra and also in geometry. As a proof of this formula, let us try to multiply algebrically the expression and try to find the formula. (a + b)2 = (a + b) × (a + b) = a(a + b) + b(a + b) = a2 + ab + ab + b2. This expression can be geometrically understood as the area of the four sub figures of the below given square diagram. Further, we can consolidate the proof of the identity (a + b)2= a2 + 2ab + b2.