Hint
1
1
1
The area of a rhombus whose vertices are (3, 0), (4, 5), (-1, 4) and (-2,-1) taken in order, is:
Franz looked for opportunities to skip school to do what?
In science, a formula is a concise way of expressing information symbolically, as in a mathematical formula or a chemical formula. The informal use of the term formula in science refers to the general construct of a relationship between given quantities.
The plural of formula can be either formulas (from the most common English plural noun form) or, under the influence of scientific Latin, formulae (from the original Latin).[2]
In mathematics, a formula generally refers to an identity which equates one mathematical expression to another, with the most important ones being mathematical theorems. Syntactically, a formula (often referred to as a well-formed formula) is an entity which is constructed using the symbols and formation rules of a given logical language.[3] For example, determining the volume of a sphere requires a significant amount of integral calculus or its geometrical analogue, the method of exhaustion.[4] However, having done this once in terms of some parameter (the radius for example), mathematicians have produced a formula to describe the volume of a sphere in terms of its radius
\(E=mc^{2}\)
In science, a formula is a concise way of expressing information symbolically, as in a mathematical formula or a chemical formula. The informal use of the term formula in science refers to the general construct of a relationship between given quantities.
The plural of formula can be either formulas (from the most common English plural noun form) or, under the influence of scientific Latin, formulae (from the original Latin).[2]
In mathematics, a formula generally refers to an identity which equates one mathematical expression to another, with the most important ones being mathematical theorems. Syntactically, a formula (often referred to as a well-formed formula) is an entity which is constructed using the symbols and formation rules of a given logical language.[3] For example, determining the volume of a sphere requires a significant amount of integral calculus or its geometrical analogue, the method of exhaustion.[4] However, having done this once in terms of some parameter (the radius for example), mathematicians have produced a formula to describe the volume of a sphere in terms of its radius:
Angles (In Degrees) | 0° | 30° | 45° | 60° | 90° | 180° | 270° | 360° |
Angles (In Radians) | 0° | π/6 | π/4 | π/3 | π/2 | π | 3π/2 | 2π |
sin | 0 | 1/2 | 1/√2 | √3/2 | 1 | 0 | -1 | 0 |
cos | 1 | √3/2 | 1/√2 | 1/2 | 0 | -1 | 0 | 1 |
tan | 0 | 1/√3 | 1 | √3 | ∞ | 0 | ∞ | 0 |
cot | ∞ | √3 | 1 | 1/√3 | 0 | ∞ | 0 | ∞ |
csc | ∞ | 2 | √2 | 2/√3 | 1 | ∞ | -1 | ∞ |
sec | 1 | 2/√3 | √2 | 2 | ∞ | -1 | ∞ | 1 |