The Correct Option is B
Solution and Explanation
For A $→$ B, Isochoric process
$\frac{P_{A}}{T_{A}}=\frac{P_{B}}{T_{B}}$
$P_{B}=\frac{T_{B}}{T_{A}} P_{A}$
$P_{B}=\frac{500}{300}\times1=\frac{5}{3}\, atm \quad\quad\quad\quad\quad ...\left(i\right)$
For B $\rightarrow$ C, Adiabatic process
$\therefore \frac{T^{\gamma}_{C}}{P_{C}^{\gamma-1}}=\frac{T^{\gamma}_{B}}{P_{B}^{\gamma-1}}$
$T_{C}=\left(\frac{P_{C}}{P_{B}}\right)^{^{\frac{\gamma-1}{\gamma}}}\times T_{B}$
$=\left[\frac{1}{5/3}\right]^{^{\frac{\left(5/3\right)-1}{\left(5/3\right)}}}\times500 \quad\quad\quad\quad\quad\left(Usinig \left(i\right)\right)$
$=\left(\frac{3}{5}\right)^{2/5} \times500 \quad\quad\quad\quad\quad ...\left(ii\right)$
For C $\to$ A, Isobaric process
$\therefore \frac{V_{C}}{T_{C}}=\frac{V_{A}}{T_{A}}$
$V_{C}=V_{A}\times\frac{T_{C}}{T_{A}}=4.9\times\left(\frac{3}{5}\right)^{2/5}\times500\times\frac{1}{300} \quad \left(Using \left(ii\right)\right)$
$V_{c}=4.9\times0.81\times\frac{5}{3}=6.6 L$