Question:

Two identical thin plano-convex glass lenses (refractive index 1.5) each having radius of curvature of 20 cm are placed with their convex surfaces in contact at the centre. The intervening space is filled with oil of refractive index 1.7. The focal length of the combination is

Updated On: Apr 5, 2022
  • -25 cm
  • -50 cm
  • 50 cm
  • -20 cm
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Using lens maker’s formula, $\frac{1}{f}=\left(\mu-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$ $\frac{1}{f_{1}}=\left(\frac{1.5}{1}-1\right)\left(\frac{1}{\infty}-\frac{1}{-20}\right)$ $\Rightarrow\,f_{1}=40$ cm $\frac{1}{f_{2}}=\left(\frac{1.7}{1}-1\right)\left(\frac{1}{-20}-\frac{1}{+20}\right)$ $\Rightarrow\quad f_{2}=-\frac{100}{7} cm$ and $\frac{1}{f_{3}}=\left(\frac{1.5}{1}-1\right)\left(\frac{1}{\infty}-\frac{1}{-20}\right)$ $\Rightarrow \,f_{3}=40$ cm $\frac{1}{f_{eq}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}+\frac{1}{f_{3}}$ $\Rightarrow\, \frac{1}{f_{eq}}=\frac{1}{40}+\frac{1}{100\backslash7}+\frac{1}{40}$ $\therefore\quad f_{eq}=-50\,$ cm Therefore, the focal length of the combination is - 50 cm.
Was this answer helpful?
0
0