Question:

The phase difference between displacement and acceleration of a particle in a simple harmonic motion is:

Updated On: Apr 5, 2022
  • $\pi$ rad
  • $\frac {3\pi}{2}$ rad
  • $\frac {\pi}{2}$ rad
  • $zero$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Displacement (x) of SHM $x=A\,sin \left(\omega t+\phi\right) \dots(i)$ $\frac{dx}{dt}=A\,\omega\,cos(\omega\,t+\phi)$ Acceleration $(a)=\frac{d^{2}x}{dt^{2}}$ $\Rightarrow a=-\omega^{2}\,A\,sin(\omega\,t+\phi)$ $\Rightarrow a=\omega^{2}\,A\,sin(\omega\,t+\phi+\pi)\dots(ii)$ from (1) & (2), phase difference between displacement and acceleration is $\pi$
Was this answer helpful?
0
0